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Maxwell’s equations for structures with arbitrary point symmetry groups are con-
sidered. It is shown that an initial boundary value problem for Maxwell’s equa-
tions in a domain � can be reduced to ∼N independent problems in a 1/N part of
the initial domain, where N is the order of the symmetry group of the domain
�. This approach allows the developing of effective methods for the numerical
solution of problems for structures with symmetries on the basis of any existing
numerical algorithm. As virtually all numerical approaches have a more than lin-
ear dependence on the computational effort from the dimension of the problem,
the approach of solving ∼N problems of size ∼1/N will result in more-efficient
procedures. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

The numerical solution of Maxwell’s equations in the general form requires prodigious
computer resources. However, in the case where the considered structure possesses sym-
metries it is possible, as is shown in this paper, to considerably reduce the dimension of the
problem.

Algorithms for bodies with symmetries based on boundary integral equations for
Maxwell’s equations in the frequency domain were considered in Refs. [1] and [2]. The
algorithm described in this paper allows also the use of finite-difference schemes for the
solution of Maxwell’s equations in time domain. It is important to note that we do not
suppose symmetry of a whole problem. The excitation, boundary, and initial conditions can
be arbitrary.
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It is known that for bodies of revolution an initial problem can be reduced to an infinite
number of independent problems in a two-dimensional domain �1, being a fundamental
domain for the group of rotations C∞.

From the point of view of group theory this approach is based on the following arguments.
If we consider a homeomorphism between group C∞ and the interval [0, 2�), then the group
C∞ possesses the irreducible representations

eim�, � ∈ [0, 2�), m = . . . , −1, 0, 1, . . . . (1)

A function u(�) on the group C∞ can be represented in the form

u(�) =
m=−∞∑
m=−∞

ũ(m)eim�, ũ(m) =
2�∫

0

u(�)e−im� d�

2�
. (2)

The relations (2) are Fourier transforms on the group C∞ [3].
After representation of all functions in form (2) and substitution of them in Maxwell’s

equation, an infinite number of independent systems of equations is obtained, where each
system corresponds to one of the representations (1).

Another type of symmetry described in publications is related to mirror symmetry. How-
ever, symmetry of a whole problem is usually considered (excitation and solution also are
both symmetric) and the problem is solved in half of the initial domain.

It means that the initial problem for a structure with a group of mirror symmetry I of
order 2 is reduced to a problem which corresponds only to one of two representations of
group I . It is natural to suggest that in the case of an arbitrary excitation the initial problem
can be reduced to two independent problems in half of the whole domain �.

The result described above is proven in this paper and generalised for structures with
arbitrary symmetry groups.

In Section 2 an algorithm is described for a simple boundary value problem. It clearly
shows the basic steps of the algorithm. In Section 3 a boundary value problem for Maxwell’s
equations for a structure with mirror symmetry is considered in the case of an arbitrary
excitation. In Sections 4 and 5 results for an arbitrary symmetry group are presented.
Numerical results for a simple structure with the Klein symmetry groups are demonstrated
in Section 6.

It is important to note that after the reduction of an initial boundary value problem to
a finite number of problems in a fundamental domain, Maxwell’s equations retain their
form. This allows the use of any existing numerical method for solution of a boundary
value problem for Maxwell’s equations (a finite-difference time domain method, a finite
integration method [4, 5], a finite element method, etc.).

2. AN EXAMPLE OF REDUCTION OF A BOUNDARY VALUE PROBLEM

FOR AN ORDINARY DIFFERENTIAL EQUATION

We consider the following boundary value problem for the ordinary second-order differ-
ential equation:
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∂2

∂x2
u(x) = 6ax + 2b, x ∈ (−1, 1),

(3)
u(−1) = −a + b − c + d, u(1) = a + b + c + d.

This problem has the simple analytical solution

u(x) = ax3 + bx2 + cx + d,

which can be represented in the form

u(x) =
{

ũ�1 (x) + ũ�2 (x), x ∈ [0, 1],

ũ�1 (−x) − ũ�2 (−x), x ∈ [−1, 0],

where ũ�1 (x) = bx2 + d and ũ�2 (x) = ax3 + cx are solutions of the two boundary value
problems

∂2

∂x2
ũ�1 (x) = 2b, x ∈ (0, 1),

∂

∂x
ũ�1 (0) = 0, ũ�1 (1) = b + d, (4)

∂2

∂x2
ũ�2 (x) = 6ax, x ∈ (0, 1), ũ�2 (0) = 0, ũ�2 (1) = a + c. (5)

Hence, the initial problem (3) can be reduced to two problems, (4) and (5), defined in
half of the original domain. Note that the form of the differential operator does not change,
because of its invariance to the mirror transformation.

In order to describe a general algorithm for problems with symmetries, we show how
problems (4) and (5) can be derived in a systematic approach.

The domain � = {x : x ∈ [−1, 1]} possesses the mirror symmetry group I = {�1, �2},
where {�1 = 1, �2 = −1} is a realisation of the mirror group in the given coordinate sys-
tem. Consequently, the representation

� = �1

⋃
�2�1,

where �1 = [0, 1] is a fundamental domain of the group I acting on �, holds true.
The solution of Eq. (3) belongs to the space C1(�) of differentiable functions. Hence,

the relations

u(−0) = u(+0), (6)

∂

∂x
u(−0) = ∂

∂x
u(+0) (7)

are fulfilled.
We introduce a mapping � of the space C1(�) into a space L(I, C1(�1)) of functions on

the set I × �1 with the conditions

û(�1, 0) = û(�2, 0),
∂

∂x
û(�1, 0) = − ∂

∂x
û(�2, 0).

The mapping � is defined by the relation

û(�i , x) = [�u](�i , x) = [�∗
i u](x) = u(�i x).
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Hence, the mapping � is biunique and we are led to the problem of determining the function
û(�i , x).

The function û(�i , x) can be represented as

û(�i , x) = ũ�1 (x)�1(�i ) + ũ�2 (x)�2(�i ),

where {�i } are irreducible representations of the group I ,

�1(�1) = �1(�2) = 1, �2(�1) = 1, �2(�2) = −1,

and ũ�i (x) can be found through Fourier transform on the group I ,

ũ�i (x) = 1

2

(
û(�1, x)�i

(
�−1

1

) + û(�2, x)�i
(
�−1

2

))
. (8)

By the mapping � the right hand side, f (x), of Eq. (3) is transformed into a function

f̂ (�i , x) =
{

6ax + 2b, �i = �1,

−6ax + 2b, �i = �2,
x ∈ �1.

Hence, applying relation (8) we obtain

f̃ �1 (x) = 2b, f̃ �2 (x) = 6ax, x ∈ �1. (9)

Analogously, for the boundary function g(x), x ∈ {−1, 1}, we have

ĝ(�i , 1) =
{

a + b + c + d, �i = �1,

−a + b − c + d, �i = �1,
(10)

g̃�1 (1) = b + d, g̃�2 (1) = a + c.

In order to impose boundary conditions for the functions ũ�i (x) at x = 0 we make use of
the relations of continuity (6) and (7) and obtain

û(�1, 0) = û(�2, 0), ũ�1 (0) + ũ�2 (0) = ũ�1 (0) − ũ�2 (0), ũ�2 (0) = 0; (11)

∂

∂x
û(�1, 0) = − ∂

∂x
û(�2, 0),

∂

∂x

(
ũ�1 (0) + ũ�2 (0)

) = − ∂

∂x

(
ũ�1 (0) − ũ�2 (0)

)
,

(12)
∂

∂x
ũ�1 (0) = 0.

Taking into account the invariance of the operator of Eq. (3) with respect to the group
I , relations (9)–(12) yield two independent boundary value problems, (4) and (5), in half
domain.

3. REDUCTION OF A BOUNDARY VALUE PROBLEM FOR MAXWELL’S

EQUATIONS IN A DOMAIN WITH MIRROR SYMMETRY

In the following the simplest case of a structure with mirror symmetry is considered.
Below, the time dependence of functions is not noted because transformations from a group
G have no impact on the time coordinate.
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The operator of the system of Maxwell’s equations

∇ × H − ∂ D

∂t
= j, ∇ × E + ∂ B

∂t
= 0, x ∈ �,

∇ · D = � , ∇ · B = 0, (13)

D = εE, B = �H

is invariant with respect to a symmetry group G of the domain �, if material distributions
ε and � possess symmetries of the group G,

ε(x) = ε(�k x), �(x) = �(�k x), ∀�k ∈ G. (14)

To define a boundary value problem it is necessary, for example, to impose boundary values
for the tangential component of the electric field

Et = F(x), x ∈ ∂�, (15)

where ∂� is a boundary of the domain �. The initial conditions are assumed homogeneous.
The domain � with mirror symmetry can be decomposed as

� = �1 + �2�1,

where �2 is a mirror transformation from the mirror symmetry group I = {�1, �2}.
We show that for arbitrary functions j, � , F this problem can be reduced to two boundary

value problems in the half domain �1 of the initial domain �.
A solution of the problem (13)–(15) can be presented in the form

E(x) =
{

Ẽ�1 (x) + Ẽ�2 (x), x ∈ �1,

�2
(

Ẽ�1

(
�−1

2 x
) − Ẽ�2

(
�−1

2 x
))

, x ∈ �2�1,
(16)

H (x) =
{

H̃ �1 (x) + H̃ �2 (x), x ∈ �1,

−�2
(

H̃ �1

(
�−1

2 x
) − H̃ �2

(
�−1

2 x
))

, x ∈ �2�1,

where �2 is a mirror transformation in the space R3. For example, if the mirror plane
coincides with the plane O XY , then

�2 =
∥∥∥∥∥∥

1 0 0
0 1 0
0 0 −1

∥∥∥∥∥∥ .

To obtain the fields E, H it is necessary only to add and subtract components of the fields
Ẽ�1 , H̃ �1 and Ẽ�2 , H̃ �2 .

The boundary value problem for fields Ẽ�1 , H̃ �1 reads

∇ × H̃ �1 − ∂ D̃�1

∂t
= j̃�1 , ∇ × Ẽ�1 + ∂ B̃�1

∂t
= 0, x ∈ �1,

∇ · D̃�1 = �̃�1 , ∇ · B̃�1 = 0,

D̃�1 = ε Ẽ�1 , B̃�1 = �H̃ �1 , (17)(
Ẽ�1

)
t
= F̃�1 (x), x ∈ ∂�1\S,(
H̃ �1

)
t
= 0, x ∈ S,
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where S is the part of the boundary ∂�1, which coincides with the mirror plane, and

j̃�1 (x) = 1

2

(
j(x) + �−1

2 j(�2x)
)
, x ∈ �1,

F̃�1 (x) = 1

2

(
F(x) + �−1

2 F(�2x)
)
, x ∈ ∂�1\S,

�̃ �1 (x) = 1

2
(� (x) − � (�2x)), x ∈ �1.

Similarly, for the fields Ẽ�2 , H̃ �2 we have

∇ × H̃ �2 − ∂ D̃�2

∂t
= j̃�2 , ∇ × Ẽ�2 + ∂ B̃�2

∂t
= 0, x ∈ �1,

∇ · D̃�2 = �̃ �2 , ∇ · B̃�2 = 0,

D̃�2 = ε Ẽ�2 , B̃�2 = �H̃ �2 , (18)(
Ẽ�2

)
t = F̃�2 (x), x ∈ ∂�1\S,(
Ẽ�2

)
t = 0, x ∈ S,

where

j̃�2 (x) = 1

2

(
j(x) − �−1

2 j(�2x)
)
, x ∈ �1,

F̃�2 (x) = 1

2

(
F(x) − �−1

2 F(�2x)
)
, x ∈ ∂�1\S,

�̃ �2 (x) = 1

2
(� (x) + � (�2x)), x ∈ �1.

The problems (17) and (18) are defined in half of the initial domain and their operators
differ by the boundary condition on the boundary S, which coincides with the symmetry
plane. The initial conditions for both problems remain homogeneous.

In the following, obtaining the boundary value problems (17) and (18) is described.
The solution of an initial boundary value problem has continuous tangential components

in points of the set S of the domain �. Hence, it satisfies the relations

lim
x→S
x∈D1

Et (x) = lim
x→S

x∈�2 D1

Et (x), (19)

lim
x→S
x∈D1

Ht (x) = lim
x→S

x∈�2 D1

Ht (x). (20)

We introduce a mapping � of the space of the vector fields in the domain � into a space of
the vector fields on the set I × �1, as defined by the relation

P̂(�i , x) = [� P](�i , x) =	
[(

�−1
i

)
∗ P

]
(x) =	�−1

i P(�i x),

where 	 = 1 if P is a vector, and 	 is equal to the determinant of the matrix �i if P is a
pseudovector [6]. Here, det(�1) = 1, det(�2) = −1. In the boundary value problem (13)–(15)
E, D, j, F are vectors, other functions are pseudovectors, and ε, � are scalars, for which
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the mapping � is defined in Section 1. The charge density � is a pseudoscalar with mapping
� defined by the relation

�̂ (�i , x) = [�� ](�i , x) = det(�i )[�
∗
i � ](x) = det(�i )� (�i x).

Hence, we are led to the problem of determining the fields Ê(�i , x) and Ĥ (�i , x).
We represent all functions of Eqs. (13) in the form

P̂(�i , x) = P̃�1 (x)�1(�i ) + P̃�2 (x)�2(�i ), x ∈ �1,

where {�i } are irreducible representations of the group I , and functions P̃�i (x) are calculated
through Fourrier transform on the group I :

P̃�i (x) = 1

2

(
P̂(�1, x)�i

(
�−1

1

) + P̂(�2, x)�i
(
�−1

2

))
, x ∈ �1.

Similarly, for the boundary function F(x), x ∈ ∂�, we obtain

F̃�i (x) = 1

2

(
F̂(�1, x)�i

(
�−1

1

) + F̂(�2, x)�i
(
�−1

2

))
, x ∈ ∂�1\S.

For imposing boundary conditions on the boundary S we use the relations (19) and (20).
We obtain

Ê t (�1, x) = �−1
2 Ê t (�2, x),

(
Ẽ�1

)
t
(x) + (

Ẽ�2

)
t
(x) = �−1

2

((
Ẽ�1

)
t
(x) − (

Ẽ�2

)
t
(x)

)
,(

Ẽ�2

)
t (x) = 0;

Ĥ t (�1, x) = −�−1
2 Ĥ t (�2, x),

(
H̃ �1

)
t (x) + (

H̃ �2

)
t (x) = −�−1

2

((
H̃ �1

)
t (x) − (

H̃ �2

)
t (x)

)
,(

H̃ �1

)
t (x) = 0.

Taking into account the invariance of the operator of Eqs. (13) with respect to the group I ,
the above relations yield two boundary value problems, (17) and (18), in half of the whole
domain.

In conclusion, we note that the reduction described above is possible only if the operator
of a boundary value problem is invariant with respect to a symmetry group of the domain.
It means that we require not only invariance of the operator of a system of differential
equations, but also invariance of the operator of boundary conditions, i.e., in points of
boundary which lie on the same orbit the type of boundary operator has to be the same.
However, the right hand side of the system of equations, the initial values, and the boundary
values are arbitrary and are not restricted to symmetric ones.

4. REDUCTION OF A BOUNDARY VALUE PROBLEM FOR MAXWELL’S EQUATIONS

FOR A DOMAIN WITH A COMMUTATIVE SYMMETRY GROUP

In the following we extend the above discussion on a system with mirror symmetry to
consider the common case of structures with arbitrary commutative groups.

Suppose that a domain �, in which a boundary value problem for Maxwell’s equations
is considered, possesses a commutative symmetry group G of order N . We show that
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the problem can be reduced to N independent problems for Maxwell’s equations in a
fundamental domain �1, which is only the 1/N part of the whole domain �.

For the domain � with the symmetry group G the following representation holds true:

� =
⋃

�i ∈G

�i�1.

We introduce a mapping as

P̂(�i , x) = [� P](�i , x) =	[(�i )
∗ P](x),

where (�i )∗ is the operation of transferring scalar and vector fields from the domain �i�1

to the domain �1 [7],

[(�i )
∗ f ](x) = f (�i x),

[(�i )
∗V ](x) = [(

�−1
i

)
∗V

]
(x) = �−1

i V (�i x),

and 	 = 1 if f is a scalar function (V is a vector function), and 	 is equal to the determinant
of the matrix �i if f is a pseudoscalar function (V is a pseudovector function) [6]. Here,
det(�i ) = 1 if �i is a pure rotation, and det(�i ) = −1 if �i is an inversion rotation.

For the fields E, H we have

Ê(�i , x) = �−1
i E(�i x), x ∈ �1,

Ĥ (�i , x) = det(�i )�
−1
i H (�i x),

and inverse relations

E(x) = �i Ê
(
�i , �−1

i x
)
, x ∈ �i�1,

H (x) = det(�i )�i Ĥ
(
�i , �−1

i x
)
.

Considering P̂(�i , x) as a function on the group G we can write [3]

P̂(�i , x) = 1

N

N∑
j=1

P̃�j (x)�j (�i ),

(21)

P̃�j (x) =
N∑

i=1

P̂(�i , x)�j
(
�−1

i

)
.

Through representation of all functions by Fourier series (21) on the group G, we obtain
N independent boundary value problems for Maxwell’s equations with the same type of
boundary conditions on the part of the boundary T = ∂�1 ∩ ∂� of the domain �1.

However, for a complete definition of boundary value problems it is necessary to im-
pose boundary conditions on the boundary part S = ∂�1\T , which we denote the “cutting
boundary.” It is shown below that in the case of a commutative group it is possible to obtain
disconnected boundary conditions.

The boundary conditions on the cutting boundary S = ∂�1\T of the domain �1 are
obtained from the condition of continuity of the tangential components of the field E and
H in the transition through the surface S.
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FIG. 1. An example of a structure with a noncommutative symmetry group.

From the sets Sk = �k�1 ∩ �1 we select the ones for which the dimension (as manifold
in three-dimensional space) is equal to 2. From their indexes we compose a new set Ind
(for example, see Fig. 1). It is easy to show that the set Ind contains no more than three
elements.

The boundary S can be represented in the form

S =
⋃

k∈Ind

Sk .

For the fields E, H in the domain � the relations

lim
x→�i Sk

x∈�i D1

Et = lim
x→�i Sk

x∈�i �k D1

Et ,

lim
x→�i Sk

x∈�i D1

Ht = lim
x→�i Sk

x∈�i �k D1

Ht , k ∈ Ind, ∀�i ∈ G,

hold true and, consequently,

(Ê(�i , x))t = (
�k Ê

(
�i �k, �−1

k x
))

t , ∀�i ∈ G,
(22)

(Ĥ (�i , x))t = det(�k)
(
�k Ĥ

(
�i �k, �−1

k x
))

t
, x ∈ Sk, k ∈ Ind.

Representing the fields Ê, Ĥ in form (21) and using the orthogonality of characters we
obtain the relations

(
Ẽ�j (x)

)
t = (

�k Ẽ�j

(
�−1

k x
))

t �j (�k),
(23)(

H̃ �j (x)
)

t = det(�k)
(
�k H̃ �j

(
�−1

k x
))

t �j (�k), x ∈ Sk, k ∈ Ind.

The conditions (23) are disconnected concerning indexes j = 1, 2, . . . , N , so that we obtain
N independent boundary value problems for Maxwell’s equations. Note that the operator



306 WEILAND AND ZAGORODNOV

of the system of Maxwell’s equations does not change its form because it is invariant to
transformations of the group G.

As an example, the problem (13)–(15) with homgeneous initial conditions in a domain
� with a commutative symmetry group of an order N can be reduced in 1/N part of the
domain � to the N independent problems

∇ × H̃ �j − ∂ D̃�j

∂t
= j̃�j , ∇ × Ẽ�j + ∂ B̃�j

∂t
= 0, x ∈ �1,

∇ · D̃�j = �̃ �j , ∇ · B̃�j = 0,

D̃�j = ε Ẽ�j , B̃�j = �H̃ �j ,
(24)(

Ẽ�j

)
t
= F̃�j (x), x ∈ ∂�1\S,(

Ẽ�j (x)
)

t
= (

�k Ẽ�j

(
�−1

k x
))

t
�j (�k),(

H̃ �j (x)
)

t
= det(�k)

(
�k H̃ �j

(
�−1

k x
))

t
�j (�k), x ∈ Sk, k ∈ Ind,

where j = 1, 2, . . . , N , S = ⋃
k∈Ind Sk , and the initial conditions remain homogeneous.

Generalising the described algorithm to the case of inhomogeneous initial conditions and
to another type of boundary conditions in now a straightforward task.

5. REDUCTION OF A BOUNDARY VALUE PROBLEM FOR MAXWELL’S EQUATIONS

FOR A DOMAIN WITH AN ARBITRARY SYMMETRY GROUP

Structures with a commutative group were considered above. In this part the case of a
noncommutative symmetry group is treated.

Suppose that a domain �, in which a boundary value problem for Maxwell’s equations
is considered, possesses a noncommutative symmetry group G of order N . It is known that
the group G possesses p ≤ N irreducible representations {�j }, and that the dimension d(�j )
of some representations in the case of a noncommutative group is more than 1.

We show that the boundary value problem for Maxwell’s equations can be reduced to
s = ∑p

j=1 d(�j ), s ≤ N , independent problems in a fundamental domain �1, which is only
1/N part of the whole domain �.

The formulas (21) we write in a more common form,

P̂(�i , x) = 1

N

p∑
j=1

d(�j )tr
(

P̃�j (x)�j (�i )
)
,

(25)

P̃�j (x) =
N∑

i=1

P̂(�i , x)�j
(
�−1

i

)
,

where p is a number of irreducible representations of the group G. Note that in the case of
d(�j ) > 1 the elements of the representation �j (�i ) are matrixes on the order of d(�j ) and,
consequently, the values P̃�j will be also matrixes on the order of d(�j ).

Proceeding as in the case of commutative group and representing all function in the form
of Fourier series (25) on the group G, we obtain N independent boundary value problems
for Maxwell’s equations with the same type of boundary conditions on the boundary part
T = ∂�1 ∩ ∂� of the domain �1.
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For a complete definition of boundary value problems it is, however, necessary to impose
boundary conditions on the boundary part S = ∂�1\T , and as shown below, some problems
will be coupled in the noncommutative case.

First, as in the case of a commutative group, we are led to relations (22). Representing
Ê in form (25), we obtain

p∑
j=1

d(�j )tr
((

Ẽ�j (x)
)

t
�j (�i )

) =
p∑

j=1

d(�j )tr
((

�k Ẽ�j

(
�−1

k x
))

t
�j (�i �k)

)
,

∀�i ∈ G, x ∈ Sk, k ∈ Ind.

Using the identity tr(AB) = tr(B A), which holds for arbitrary matrixes A and B, we obtain
conditions

(
Ẽ�j (x)

)
t
= �j (�k)

(
�k Ẽ�j

(
�−1

k x
))

t
, x ∈ Sk, k ∈ Ind. (26)

Analogously, for the field H we obtain

(
H̃ �j (x)

)
t = det(�k)�j (�k)

(
�k H̃ �j

(
�−1

k x
))

t , x ∈ Sk, k ∈ Ind. (27)

Since the values Ẽ�j (x), H̃ �j (x), and �j (�k) are matrixes of order d(�j ), relationship (26)
can be considered a relation between the columns of the matrix Ẽ�j (x), whereas relationship
(27) represents a relation between columns of the matrix H̃ �j (x). Thus, fields placed in one
column of the matrixes Ẽ�j (x), H̃ �j (x) are related through boundary conditions (26) and
(27). Consequently, only d(�j ) independent boundary value problems correspond to each
representation �j . The dimension of each of them is increased by d(�j ) times. All problems
corresponding to the same representation have the same operator. Consequently, we have
reduced the initial problem in the whole domain to s = ∑p

j=1 d(�j ), s ≤ N , independent
problems for Maxwell’s equations in a fundamental domain �1, which is only 1/N part of
the whole domain �.

Note that the operator of the system of Maxwell’s equations does not change because of
its invariance with respect to the group G.

As an example we will consider the domain � shown in Fig. 1, which has the symmetry
group of the square C4
. This group is a noncommutative one of order 8 and has five
irreducible representations: �j , j = 1, 2, 3, 4, are one-dimensional representations and �5 is
two-dimensional. Hence, a boundary value problem for Maxwell’s equations in the domain
� can be reduced to six problems in the domain �1, which is only 1/8 of the whole
domain �.

The problems for the fields Ẽ�j , H̃ �j , j = 1, 2, 3, 4, have an ordinary statement. The
problem for fields Ẽ�5 , H̃ �5 is divided into two independent problems with the same operator:
one problem for the fields (Ẽ�j )11, (Ẽ�j )21, (H̃ �j )11, (H̃ �j )21 and one problem for the fields
(Ẽ�j )12, (Ẽ�j )22, (H̃ �j )12, (H̃ �j )22. Consequently, for two-dimensional representation �5 we
have two problems, and the dimension of each of them is doubled because of the coupling of
the fields placed in one column of matrixes Ẽ�5 , H̃ �5 on the cutting boundary S = S2 ∪ S8.

As we see from the above example the case of a noncommutative group is more compli-
cated and requires developing appropriate numerical methods for a solution of problems in
a domain with noncommutative symmetry group.
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FIG. 2. The form of excitation.

6. A NUMERICAL EXAMPLE OF A SOLUTION OF A BOUNDARY VALUE PROBLEM

IN A DOMAIN WITH THE KLEIN SYMMETRY GROUP

To illustrate the method, we consider a scattering problem in two dimensions. We shall
assume that the field components do not depend on the z coordinate of a point. We take
ε, � of free space. The only source of our problem is a current source exiting a TM wave,
the time dependence of which is shown in Fig. 2. This Gaussian pulse corresponds to a
frequency range of 0–30 GHz.

We shall consider the diffraction of a TM wave that exited at point U = (2 cm, 3 cm)
by a perfectly conducting rectangle, as shown in Fig. 3a. The rectangle has dimensions
2 × 1 cm. Fields are monitored at four points p1 = (1 cm, 2.5 cm), p2 = (1 cm, −2.5 cm),
p3 = (−1 cm, −2.5 cm), and p4 = (−1 cm, 2.5 cm), which are also shown in Fig. 3a.

The rectangle has two planes of symmetry and possesses the Klein symmetry group
of order 4. Due to the excitation source the whole problem does not have any symmetry.
However, as shown above, it can be reduced to four independent problems in one quarter
of the whole domian (see Fig. 3b) with different boundary conditions on S2 = �2�1 ∩ �1

and S4 = �4�1 ∩ �1.

FIG. 3. The geometry for the scattering problem.
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FIG. 4. The solutions in one-quarter of the domain.

The Klein symmetry group is a commutative group and has four unitary nonequivalent
one-dimensional representations:

�1 �2 �3 �4

�1 1 1 1 1
�2 1 1 −1 −1
�3 1 −1 −1 1
�4 1 −1 1 −1 .

We solve problem (24) for the fields Ẽ�1 , H̃ �1 in the fundamental domain �1 with
boundary condition

(
H̃ �1 (x)

)
t = 0, x ∈ S2 ∪ S4.

The component (Ẽ�1 )z of this solution at point p1 is shown in Fig. 4a.
For the fields Ẽ�2 , H̃ �2 the boundary conditions in the domain �1 have the form

(
Ẽ�2 (x)

)
t = 0, x ∈ S2,(

H̃ �2 (x)
)

t = 0, x ∈ S4,

The component (Ẽ�2 )z at point p1 is shown in Fig. 4b.
For the fields Ẽ�3 , H̃ �3 the boundary conditions have the form

(
H̃ �3 (x)

)
t
= 0, x ∈ S2,(

Ẽ�3 (x)
)

t
= 0, x ∈ S4,

The component (Ẽ�3 )z at point p1 is shown in Fig. 4c.
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FIG. 5. The full domain solution: (a) at point p1; (b) at point p2; (c) at point p3; (d) at point p4.

And finally for the fields Ẽ�4 , H̃ �4 the boundary condition has the form

(
Ẽ�4 (x)

)
t = 0, x ∈ S2 ∪ S4.

The component (Ẽ�4 )z at point p1 is shown in Fig. 4d.
According to formula (21) we can recover the solution of the whole problem. In Figs. 5a–

5d the component Ez at points p1, p2, p3, p4 is shown correspondingly. It was obtained
through the relations

Ez = (
Ẽ�1

)
z + (

Ẽ�2

)
z + (

Ẽ�3

)
z + (

Ẽ�4

)
z at p1,

Ez = (
Ẽ�1

)
z + (

Ẽ�2

)
z − (

Ẽ�3

)
z − (

Ẽ�4

)
z at p2,

Ez = (
Ẽ�1

)
z − (

Ẽ�2

)
z − (

Ẽ�3

)
z + (

Ẽ�4

)
z at p3,

Ez = (
Ẽ�1

)
z − (

Ẽ�2

)
z + (

Ẽ�3

)
z − (

Ẽ�4

)
z at p4.

The data shown in Fig. 5 were compared with the solution of the whole problem without
taking the symmetry into account. In Fig. 6 the relative deviation �(t) = (Ez(t) − E ′

z(t))/
maxt |E ′

z(t)| is shown, where E ′
z is a solution of the whole problem without using of the

symmetry and Ez is a solution shown in Fig. 5. Deviation �(t) is evaluated at the same
points p1, p2, p3, p4 and Figs. 6a–6d correspond to Figs. 5a–d. The results coincide on the
round-off level.

The numerical results presented in this paper were obtained using the program package
“CST Microwave Studio 3.0” [8], which uses a finite integration method for solution of
Maxwell’s equations in time domains.
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FIG. 6. The comparison of the solutions: (a) at point p1; (b) at point p2; (c) at point p3; (d) at point p4.

7. CONCLUSIONS

In the paper it is shown that for domains with symmetries, a boundary value problem for
Maxwell’s equations can be reduced to ∼N independent problems in a fundamental domain,
which is only 1/N part of the whole domain. In the case of a commutative group the problems
retain their dimensions, and so the usual numerical methods of a solution of a boundary
value problem for Maxwell’s equations can be used. In the case of a noncommutative group,
conditions on the cutting boundary are more complicated and the dimension of problems
increases. This requires developing special approaches to their numerical solution.

In both cases the dimension of a solution domain is reduced by a factor N . The solution
of the reduced problem demands considerably fewer computational resources, and so that
approach allows increasing significantly the dimension of the problems which can be treated
numerically.
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